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Abstract

Several non-reflecting computational boundary conditions that meet certain criteria and
have potential applications to duct acoustics are evaluated for their effectiveness. The same
interior solution scheme, grid, and order of approximation are used to evaluate each condition.
Sparse matrix solution techniques are applied to solve the matrix equation resulting from
the discretization. Modal series solutions for the sound attennation in an infinite duct are
used to evaluate the accuracy of each non-reflecting boundary condition. The evaluations are
performed for sound propagation in a softwall duct, for several sources, sound frequencies,
and duct lengths. It is shown that a recently developed nonlocal boundary condition leads
to sound attenuation predictions considerably more accurate than the local ones considered.
Results also show that this condition is more accurate for short ducts. This leads to a
substantial reduction in the nunmiber of grid points when compared to other non-reflecting

conditions.

1 Introduction

Over the past decade, there has been considerable interest in the use of computational
methods for obtaining solutions to problems in aeroacoustics. This interest stems primarily
from a lack of exact analytical solutions for predicting, understanding, and controlling various
acoustic phenomena. As computational models have evolved, difficulty with the closure of
the computational domain has emerged as a major problem in the caleulations.

The difficulty with closure of the computational domain arises because aeroacoustics
problems are typically set in an infinite domain with a radiation condition on the boundary
surface at infinity. However the compntational domain cannot extend to infinity, so the
problem is decomposed into a finite computational domain within some outer domain that
extends to the boundary at infinity. 'The interface between these domains is called the

artificial or computational boundary. One needs a set of equations valid at this computational



boundary. The primary purposes of these equations is to guarantee a unique and well-see
posed solution to the aeroacoustics problem. These equations are usually a set of partial
differential operators whose terms involve only local information at each boundary point
such as the dependent variables and their derivatives. To avoid nonphysical reflections from
occurring at the computational boundary, these differential operators are also intended to
constrain the local solution to consist of waves traveling outward from the computational
domain. When used in this manner, the differential equations are called local non-reflecting
boundary conditions.

There currently exist a large number of rescarch papers concerned with the development
of local non-reflecting conditions for use at computational boundaries (refs. [1]- [6]). The
references cited above represent only a small sampling of local boundary conditions, which
have potential application to duct acoustics. Unfortunately, experiences show that the con-
ditions developed in these works arc reflecting for a large class of aerocoustic problems.
This is especially true for classes of acroacoustic problems for which waves impinging on the
computational boundary is not close to normal incidence.

The proper approach to dealing with the problem of finite computational domains is
to match the computational solution in the inner domain with the general solution in the
outer domain. This general outer solution satislies the radiation condition at infinity and
constrains the solution on the computational interface. But this constraint is not in general
a local condition. Instead, a given value of a variable at one point. on the interface surface
influences the values of other variables at all points on the interface surface. Constraints of
this type are call nonlocal conditions. They can be constructed for all classes of problems in
which the exterior domain is linear. '

In a recent report (ref. {7]), the authors presented the formulation of a nonlocal non-
reflecting boundary condition for duct acoustics. The purpose of this paper is to compare
this nonlocal boundary condition to several local conditions that could compete with it. Due
to space limitation and time restraints, all of the existing non-reflecting boundary conditions
could not be compared with this new condition. To limit the number of choices, we include
only those conditions that meet certain criteria.

Section 2 defines the basic equations used in the computation and presents the non-
reflecting boundary conditions that are tested. Modal series solutions for the sound atten-
uation in an infinite duct are used to evalnate the accuracy of each boundary condition.
This series solution is also presented in section 2. The interior solution technique, method
of implementing each boundary condition, effect of each condition on the matrix structure,
and matrix solution technique is described in section 3. Results for a broad range of acoustic

parameters are presented in section 4. Conclusions, relative to boundary conditions evalu-
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ated in this paper are given in section 5. References and figures cited in this report are given

at the end of section 5.

2 Governing Equations and Boundary Conditions

Consider a two-dimensional rectangular duct without mean flow as shown in figure 1. The
duct is assumed infinitely long in the axial direction with a known acoustic source pressure
at the plane r = 0. The walls of the duct contain sound absorbing material whose material
properties vary along the axis of the duct for 0 < # < L. Sound absorbing properties of the
wall lining are specified by perscribing the admittance of the lower wall, By(z), and upper
wall, By(z), of the duct. Within the region I, < r < oo the material properties of the liner
are assumed uniform, so that an outgoing wave ficld exists in this region. It is the purpose
of this work to test several non-reflecting boundary conditions for terminating the duct at
r = L.

Steady-State acoustic wave solutions within the duct in figure 1, take the form
plr,y,t) = plx,y)e*™ (1)

where p is the steady state acoustic pressure, [ is the frequency in Hertz, ¢ = /-1, and

p(r,y) satisfies Helmholtz’s equation
Vip+ kip=0 (2)

Here, & = 2—:1 is the freespace wavenumber, ¢ is the sound speed and V2 is the Laplace
operator in the (x,y) plane.
The inflow and wall boundary conditions require a specification of the source pressure

and wall admittance

p(0,y) = G(y) (3)

;3_.’3(""0) = —ikf,(x)p(x,0) (4)
Y
(I

:)—;(n, 1y = ikfin(c)ple, 1) (5)

where G(y), Bo(z), and By(x) denote the known source pressure and normalized admittance
of the lower and upper wall respectively. To complete the specification of the boundary value
problem in the duct, a non-reflecting condition must be specified at the outflow boundary.
Several non-reflecting boundary conditions were considered for application at z = L. In
order to limit the number of choices only those boundary conditions that met the following

criteria were considered



1. The boundary condition must have a frequency and possibly time domain extension.
2. The boundary condition must be extendible to shearing flows and three dimensionality.

3. The order of the boundary condition must be such that the linear finite element theory

of ref. [7] could be applied for the interior solution.

4. The coupling of the boundary condition with the interior solution scheme must lead

to a coeflicient matrix that remains block tridigonal.
The non-reflecting conditions that meet the above criteria that are tested in this paper are

1. The local boundary condition of Giles (ref. [5])

1dp  dp
—— - = 6
c il + r (6)

2. The nonlocal frequency-domain boundary condition of the current authors (ref. [7])
{ri} = 1Z:){w;) (7)

where {p;}, {t;} are vectors containing values of the frequency-domain acoustic pres-
sure and normal velocity at boundary node ¢ and j respectively. Further, the coeflicients

in the nodal impedance matrix [7;;] are defined explicitly in ref. [7).
3. The local highly-absorbing boundary condition of Engquist and Majda (ref. [1])

Lo L& 1% ®)
AN cdrdl 2090

Several remarks concerning the above boundary conditions are in order. Each of the above
boundary conditions has heen specialized to both a no-flow environment and right moving
waves.  All of the above conditions are non-reflecting for plane wave sources. The first
non-reflecting condition above is a familiar one that was derived by Hedstrom (ref. [2]) and
several others prior to the work of Giles. This condition has heen used by duct acousticians
for several decades as a termination condition, and is often referred to as the pe termination
condition. Becanse the Giles condition (ref. [5]) in the absence of mean flow reduces to
this condition, it is referred to here as the “Giles condition.” Finally, Engquist and Majda
((ref. [1]) have shown that the third condition gives reflections considerably smaller than the
first condition when the Neutnann wall boundary condition is imposed. This conclusion may

not be valid when the sound propagates between walls lined with sound absorbing material.



Periodic acoustic fields determined from the non-reflecting houndary conditions above are
used to evaluate the performance of the wall lining over x length of linings. The following

expression is used to evaluate the acoustic intensity at a point (x,y) in the duct ref. ([8])

I{z,y) = 47rlfp0§R{I’(-T»?/) ['%y—))] } (9)

where the superscript asterisk denotes the complex conjugate, pg is the mean density within

the duct, and R{ } denotes the real part of the complex expression within the braces. The

attennation over z length of lining in decibels is

di3(x) = 10logy, 3//((2; (10)
W(J-)zjo" I(c,y)dy (11)

Modal series solutions for the attenuation are used to determine the accuracy of each
non-reflecting boundary condition. These series solutions are possible when the material
properties of the wall lining are constant. When this condition is met, the solutions to

Helmbholtz’s equation in the form of outgoing waves are of the complex exponential form

~ M Kz
PE,y) =3 AnPuly)e™n (12)

where K, is the axial propagation constant, and the functions P, (y) are the acoustic pres-
sure eigenfunctions. Note that the series has heen truncated at a finite number M. To
insure no reflections, the sum in equation (12) is taken only over modes whose axial prop-
agation constants possess positive imaginary parts. The method for obtaining P,, and K,
is described in ref. [7] and the mode amplitude coeflicients are obtained from the source

condition and the orthogonality of the lined duct modes

_ o G P y)dy
C I Phy
Equations (12) and (13) are substituted into cquations (9)-(11) to obtain the modal series

(13)

expression for the attenuation of the lining.

3 The Numerical Method

In this section of the paper we describe the interior solution technique, the numerical im-
plementation of each of the non- reflecting boundary conditions, and the matrix solution
technique. Several details have been purposely omitted since they can be obtained in several

of the cited references.



3.1 The Interior Solution Technique

The numerical method chosen to solve equation 2 coupled with the source, wall and non-
reflecting boundary conditions is a Galerkin Finite Flement Method with linear elements
used as the basis functions. The method is described in detail in the earlier paper (ref. [7]).

Application of the method results in a matrix equation of the form

[A{{®} = {1} (14)

where [A] is an MNzMN complex matrix, and {®} is a MNz1 column vector containing
the nodal values of the unknown acoustic pressure. The integers N and M are the number
of grid points in the x and y direction respectively. Equation (14) does not contain the
effects of the non-reflecting condition. The non-reflecting condition must be imposed on this
matrix equation hefore the solution can be obtained. Details of the implementation of each

non-reflecting boundary condition are now discussed.

3.2 Boundary Condition Implementation

The frequency-domain form of the Giles condition ref. [5] is

On( 1,
kp(Ly) — i 20ay) (15)
dr
The Giles condition is discretized as followed
kpw,y — i PN-] o j=1,2..M (16)

(rn —aNoy)

Note that the spatial gradient in the boundary condition discretization is only first order
accurate. Thus, the interior solution and boundary condition discretization are of the same
order. Equation 16 constitutes M equations which are imposed as restraints on equation 14
prior to solving the matrix equation.

Boundary condition implementation of the nonlocal condition is exactly as discussed in
ref. [7]. The axial velocity vector at the grid points {u;} is expressed in terms of the gradient
of the acoustic pressure field. The axial acoustic pressure gradient is then discretized with a
first order difference approximation. This results in M restraint equations which are imposed
on the matrix equation in the usual manner.

The frequency-domain form of the Engquist and Majda condition ref. [1] is

2 . Op(L,y) 10*(L,y)
(L, y) — ok — + -

dr 2 oy? =0 (a7




For the numerical experiment presented here, the above equation is discretized using first

order one-side differences

PNy = PNovg] | [Pesee = gt vl _ o i=1L2.M—-2  (18)

kapN y lk[
v (zn —xN_y) 2yj1 —v;)?

e = el [PN.J'—? — 2pN ;-1 ;LPN.J'] —0j=M-1,M  (19)
(zN — zN-1) 2(y; — yj-1)
Note that although the boundary condition has a second derivative term in y, first order one-

Kp i

sided differences are still used to approximate all devivatives in z and y. The M equations
generated by the discretization aboved are imposed on the matrix equation (14) as a set of

restraints.

3.3 Effects of Boundary conditions on the Matrix Structure

The augmented global matrix generated by Galerkin’s Method, following application of the
source, wall, and non-reflecting boundary conditions, is an unsymmetric, positive indefinite,
complex matrix. Fortunately, owing to the discretization scheme and choice of non-reflecting
boundary conditions, it will be block tridiagonal as shown in figure 2. The superscript T
denotes the matrix transpose in the figure. Fach minor block A; and B; are Mz M matrices
that are tridiagonal. These blocks are obtained from the interior solution scheme and wall
boundary conditions. The minor block E; is the identity matrix, which results from applying
the source condition (3). Minor blocks Cy and Dy are Mz M complex matrices that contain
the effects of the non-reflecting conditions. Fach minor block Cy and Dy is a diagonal
matrix when the Giles condition (16) is implemented. Application of the Engquist and
Majda condition (18) and (19) leads to a diagonal minor block Cy, while Dy will contain a
main diagonal, two superdiagonal, and two subdiagonals. Finally, both minor blocks are full

matrices when the nonlocal condition of Zorumski, Watson, and Hodge (7) is implemented.

3.4 Solution to the Matrix Equation

The matrix [A], generated by the method deseribed here, is not symmetric or positive definite.
Fortunately, it is block tridiagonal as shown in figure 2. Much practical importance arises
from this structure, as it is convenient for minimizing storage and maximizing computational
efficiency. Economy of storage is acheived by storing the rectangular array of coefficients
within the bandwidth of [A] as shown in figure 3. All computation, storage and boundary
condition implementation is performed only on the rectangular portion of this matrix. Special
inatrix techniques exist for a solution of this structure. Gaussian climination with partial

pivoting and equivalent row infinity norm scaling is used to reduce the rectangular system to
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upper triangular form. Back substitution is then used to obtain the solution for the acoustic

pressure.

4 Results and Discussion

A computer code implementing all three boundary conditions and the modal series solution
discussed in this paper has been developed and programmed to run on a supercomputer. The
results were obtained with the underlying objective of comparing the attenuation obtained
from each boundary condition with the modal series solutions over a broad range of acoustic
parameters. The same interior solution scheme, grid, and order of approximation are used
to evaluate each non-reflecting condition. Within this context, the effect of changing the
source pressure, frequency and duct length is evaluated for a specified lining.

With respect to the acoustic parameters, effects of three source pressures on the boundary

condition are studied (see eq. 12)

G(y) = Pi(y) (20)
Gly) = Ps(y) (21)
Gly) =30 m*Pa(y) (22)

Other parameters include a softwall duct with (Bo = By = .5 — .57), three frequencies
(/=100 Hz, f=1,000 Hz,f =5,000 Iz) and four duct lengths (1. = H, L = 8H, L =
61, L = 2H). All calculations were performed for a duct 1 meter high (/I =1 m) and at
ambient conditions (¢ = 343 m/sec). The griding remained fixed as each acoustic parameter
was changed. Fifty-one evenly spaced points were used in the y direction (M = 51) and
the number of axial points N was determined such that 10 points per axial wavelength were
retained at the highest frequency of 5,000 /1.

Figure 4 compares the attenuations predicted from the boundary conditions when the
location of the boundary is at I = . The source is the lowest order mode and the frequency
i8 100 Hz. The new nonlocal condition give predictions that are in excellent agreement with
the modal series. Giles’s condition is more accurate than the condition of Engquist and
Majda for £ < .65, and in the region 7 > .65 the condition of Engquist and Majda is
more accurate. All curves except that of Engquist and Majda show a linear attenuation
rate, as expected for a single mode source. The oscillations in the attenuations predicted
by the Engquist and Majda condition are typical of results obtained when the boundary
is reflecting. Figures 5,6 and 7 show results for the same source and frequency, but when
the boundary is located at @ = 8/, = = .6/I, and x = .2/], respectively. Although the

attenuations are lower due to the shorter duct length, the trends are consistent with those



of figure 4. Note also that, as the boundary is brought closer to the source, the attenuation
on a percentage basis is less accurate for all conditions except the nonlocal condition.

Attenuation predictions in figure 8, for which L, = H and the frequency is 1,000 Hz
are typical of results obtained for several other duct lengths at that frequency. Here, the
source is still the lowest order mode. At this higher frequency the liner is not effective, giving
little attenuation over the lining. Both the Giles and the nonlocal condition gives accurate
predictions but the condition of Fngquist and Majda gives poor comparison with the modal
series. Results were also compnted for 5,000 1z with the lowest order mode as the source
and for several duct lengths. The attenuation curves are not shown in order to limit the
amount of discussion. However, trends were consistent with that of figure 8.

Figure 9 shows results at a frequency of 100 /12, I. = 11, and for the fifth order mode
source. All boundary conditions give good predictions for z/1, < .75. However, the condition
of Engquist and Majda and also that of Ciiles gives poor altenuation predictions near the
outflow boundary. In contrast, the nonlocal condition is in excellent agreement with the
modal series in this region. The discrepancy in the attenuation predictions obtained with the
other two boundary conditions was not eliminated by applying the boundary conditions closer
to the source. To the contrary, the discrepancy on a percentage basis increased when the
boundary was moved closer to the source. Further, predictions with the nonlocal condition
were equally accurate when the boundary condition application point was moved close to
the source.

Figure 10 shows the predictions at 1,000 //z for the same source and duct length as
figure 9. The boundary condition of Engquist and Majda gave poor predictions and this curve
is not shown. The two remaining boundary conditions give accurate predictions, although
the nonlocal condition is closer to the modal series results. Figure 11 shows predictions
when the frequency is increased to 5,000 //z and all boundary condition curves included.
Note that the liner performs poorly at this frequency giving little attenuation. All boundary
conditions give good predictions al this frequency. Note that the curve for the nonlocal
condition and the modal series solution are identical,

It should be noted that in [7], results at a frequency of 5,000 Hz could not be accurately
predicted using the nonlocal boundary condition. Further, it was speculated that the poor
prediction at this frequency was a result of using only 3.4 points per axial wavelength. The
banded solver adopted in this paper allows several hundred thousand degrees of freedom to
be incorporated with relative case. The good agreement with the modal series predictions
at 5,000 Hz using the nonlocal boundary condition confirms that this conjecture was true.

Turbomachinery sources, such as aircrafl. engine fans, are distributed sources. Such

sources contain acoustic energy in many duct modes. Figure 12 compares attenuation pre-

1
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dictions for the distributed source define by (22) at a frequency of 100 Hz and for L = H.
The nonlocal condition is generally the most accurate for {his source. Further, the condition
of Engquist and Majda gives attenuation predictlions closer to the modal series results than
the condition of Giles. Figure 13 shows results for the same source when the frequency is
increased to 1,000 Hz. The curve generated by the Engquist and Majda condition is not
shown, since it led to predictions ten decibels higher than the modal series results. Both
the Giles and the nonlocal condition give nearly the same predictions, although the Giles

condition is slightly more accurate in a small region near the end of the duct.

5 Concluding Remarks

Several non-reflecting boundary conditions which have potential application to duct acoustics

have been evaluated for their effectiveness. Those that met the criteria and were tested are

[em—

. The local boundary condition of Giles.

o

. The local highly-absorbing boundary condition of Fngquist and Majda.
3. The nonlocal houndary condition of Zornmski, Watson and Hodge.

The case of of an infinite two-dimensional duct without flow was used for simplicity. All
three boundary conditions however, have extensions to three dimensionality, variable area
and wall linings, and flow. The interior solution technique was a lincar finite element method.
All three boundary conditions were tested using the same grid and order of approximation.
A band solver has been used to account for the large number of degrees of freedom required
- for high frequency and long ducts.

The effectiveness of each boundary condition has been evaluated by comparing predicted
attenuation in a softwall duct with analytical results available from modal theory. All three
boundary conditions were evaluated for the lowest order mode, a higher order mode, and for
a distributed source. Attenuation predictions for several frequencies were evaluated, and the
effects of applying each boundary condition close to the source has been investigated.

Results presented here show that the new nonlocal boundary condition of Zorumski,
Watson, and Hodge gave results consistent with exact analytical predictions over a broad
range of acoustic parameters. This boundary condition gave attenuation predictions more
accurate than the condition of Giles and more accurate than the condition of Engquist and
Madja over a range of acoustic parameters. Ciles condition however, was competitive at
higher frequencies where the liner was not effective. The boundary condition of Engquist
and Majda gave poor predictions for the range of parameters considered. The accuracy of
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the attenuation predictions on a percentage basis were observed to decrease with duct length

when the Giles or condition of Engquist and Majda were used. However, the accuracy of the

attenuation predicted using the nonlocal boundary condition is accurate for short ducts as

well. This is an important result, since a substantial reduction in grid points can be obtained

by applying the nonlocal condition close to the sound source. Implementation of the band

solver has confirmed that the poor attenuation predictions at 5,000 /{z in the earlier paper

i8 a result of having too few points per wavelength in the discretization.
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Figure 4: Attenuation comparison for the lowest order mode source in a softwall duct at 100

Hz (1=H).
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Figure 5: Attenuation comparison for the lowest order mode source in a softwall duct at 100
Hz (. = .8H).
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Figure 6: Attenuation comparison for the lowest order mode source in a softwall duct at 100

Hz (L = 6H).
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Figure 7: Attenuation comparison for the lowest order mode source in a softwall duct at 100

"z (L = 20).
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Figure 9: Attenuation comparison for the fifth order mode source in a softwall duct at 100

Hz (I = H).

20



Modal Series

......... Giles .
8F Zorumski, Watson, ,’,x' ‘
- & Hodge '

)]

H

Attenuation in decibels, dB

N

0.0 0.2 0.4 0.6 0.8 1.0
Dimensionless axial coordinate, x/L

Figure 10: Attenuation comparison for the fifth order mode source in a softwall duct at 1,000
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